# NAND gate generation and BAG export tutorial This tutorial contains instructions to generate a NAND gate layout and export it to OA database through [BAG](https://github.com/ucb-art/BAG_framework) framework. The scripts used in this tutorial can be found here: [quick_start_BAG.py](../../../quick_start_BAG.py). ## Setup and running Run following commands below to install laygo and load. 1. Download cds_ff_mpt PDK from [Cadence Customer Support](https://support.cadence.com) Make sure you can launch virtuoso and make a layout using the PDK. For BWRC users, PDK is installed in ```/tools/cadence/GPDK/cds_ff_mpt_v_0.3/```. 2. Clone BAG2_cds_ff_mpt repo. ``` $ git clone git@github.com:ucb-art/BAG2_cds_ff_mpt.git ``` 3. The technology setup repo has 2 submodules in it: BAG_framework and laygo. Let's load the submodules. Enter the BAG_cds_ff_mpt (or BAG2_cds_ff_mpt) directory and type this: ``` $ git submodule init $ git submodule update ``` * If you want to update all submodules to the latest ones, type this: ``` $ git submodule foreach git pull origin master ``` 4. Open **.cshrc**, **bag_config.yaml** file, and check if all path variables are set correctly. For BWRC users, all variables are set correctly so skip this step. 5. Source .cshrc, launch virtuoso, type ```load "start_bag.il"``` in CIW to load skill APIs for bag. 6. Launch bag, by typing this: ``` $ start_bag.sh ``` 7. Launch the generator script, by typing this in python console. ```python run laygo/quick_start_BAG.py ``` You should see the generated nand gate layout in laygo_working/nand_test and it should looks like this: ![nand](images/laygo_bag_nand_cds2.png) ## Initialize GridLayoutGenerator Let's take a look into the detail of the layout generator. Open laygo/quick_start_BAG.py Following command will initialize GridLayoutGenerator, the main generator object that contains all core generation functions. ```python #initialize laygen = laygo.GridLayoutGenerator(config_file="laygo_config.yaml") laygen.use_array = True # use InstanceArray instead of Instance ``` Note that **laygo_config.yaml** is passed, which contains process specific parameters. **use_array** is used to enable a recently added feature; InstanceArray. Most legacy generator codes are not using this option. ## Load template and grid database The example technology setup uses *cds_ff_mpt_microtemplates_dense* for the primitive template library. All primitive template and grid information are stored in *cds_ff_mpt_microtemplates_dense_templates.yaml*, *cds_ff_mpt_microtemplates_dense_grids.yaml* and those files should be loaded before the actual layout generation steps. Run the following commands to load database. ```python # load template and grid utemplib = laygen.tech + '_microtemplates_dense' # device template library name laygen.load_template(filename='./labs/' + utemplib + '_templates.yaml', libname=utemplib) laygen.load_grid(filename='./labs/' + utemplib + '_grids.yaml', libname=utemplib) laygen.templates.sel_library(utemplib) laygen.grids.sel_library(utemplib) ``` **load_template** and **load_grid** functions load yaml files that store template and grid database to laygen.templates and laygen.grid. If you want to see the loaded information, run the following commands. ``` laygen.templates.display() laygen.grids.display() ``` Or you can specify template (or grid name) to display, like this. ```python laygen.templates.display(libname='cds_ff_mpt_microtemplates_dense', templatename='nmos4_fast_center_nf2') laygen.grids.display(libname='cds_ff_mpt_microtemplates_dense', gridname='route_M1_M2_basic') ``` Then you can see the specified template and grid information, as shown below. ``` Display lib:cds_ff_mpt_microtemplates_dense, template:nmos4_fast_center_nf2 [Library]cds_ff_mpt_microtemplates_dense [Template]nmos4_fast_center_nf2 xy:[[0.0, 0.0], [0.4, 0.9]] pins:{'S0': {'netname': 'S0', 'layer': ['M1', 'pin'], 'xy': array([[-0.05, 0.2 ], [ 0.05, 0.5 ]])}, 'S1': {'netname': 'S1', 'layer': ['M1', 'pin'], 'xy': array([[ 0.35, 0.2 ], [ 0.45, 0.5 ]])}, 'D0': {'netname': 'D0', 'layer': ['M1', 'pin'], 'xy': array([[ 0.15, 0.2 ], [ 0.25, 0.5 ]])}, 'G0': {'netname': 'G0', 'layer': ['M1', 'pin'], 'xy': array([[ 0.125, 0.625], [ 0.275, 0.775]])}} Display lib:cds_ff_mpt_microtemplates_dense, grid:route_M1_M2_basic [Library]cds_ff_mpt_microtemplates_dense [Grid]route_M1_M2_basic route_M1_M2_basic width:0.2 height:0.2 xgrid:[ 0.] ygrid:[ 0.] xwidth:[ 0.1] ywidth:[ 0.1] viamap:{via_M1_M2_0: [0, 0] } ``` ## Library and cell creation The next step is creating a library and cell to work on. Run the following commands to create a workspace. ```python # library & cell creation laygen.add_library('laygo_working') laygen.add_cell('nand_test') ``` The commands will create library and cell to work on. In order to display the contents, simply type ```laygen.display()```. The output will be like this. (The nand_test is empty because we did not create anything yet). ``` Display [Library]laygo_working [Cell]nand_test ``` ## Cell placements The following commands will place 4 2-fingered transistors (2 nmos, 2 pmos) and cluster them to 2 lists, nd and pd. ```python # placement ######################################################################################################## # placement parameters pg = 'placement_basic' # placement grid nd = [] # nmos nd += [laygen.relplace(cellname='nmos4_fast_boundary', gridname=pg, refobj=None, shape=None)] nd += [laygen.relplace(cellname='nmos4_fast_center_nf2', gridname=pg, refobj=nd[-1].right, shape=[1, 1])] nd += [laygen.relplace(cellname='nmos4_fast_boundary', gridname=pg, refobj=nd[-1].right, shape=None)] nd += [laygen.relplace(cellname='nmos4_fast_boundary', gridname=pg, refobj=nd[-1].right, shape=None)] nd += [laygen.relplace(cellname='nmos4_fast_center_nf2', gridname=pg, refobj=nd[-1].right, shape=[1, 1])] nd += [laygen.relplace(cellname='nmos4_fast_boundary', gridname=pg, refobj=nd[-1].right, shape=None)] pd = [] # pmos pd += [laygen.relplace(cellname='pmos4_fast_boundary', gridname=pg, refobj=nd[0].top, shape=None, transform='MX')] pd += [laygen.relplace(cellname='pmos4_fast_center_nf2', gridname=pg, refobj=pd[-1].right, shape=[1, 1], transform='MX')] pd += [laygen.relplace(cellname='pmos4_fast_boundary', gridname=pg, refobj=pd[-1].right, shape=None, transform='MX')] pd += [laygen.relplace(cellname='pmos4_fast_boundary', gridname=pg, refobj=pd[-1].right, shape=None, transform='MX')] pd += [laygen.relplace(cellname='pmos4_fast_center_nf2', gridname=pg, refobj=pd[-1].right, shape=[1, 1], transform='MX')] pd += [laygen.relplace(cellname='pmos4_fast_boundary', gridname=pg, refobj=pd[-1].right, shape=None, transform='MX')] ``` **GridLayoutGenerator.relplace** function places templates on grid, using relative geometry information provided as arguments. Basically there are 2 ways to place templates: 1. **xy**: with **xy** argument, the function places the template (specified by templatename) at **xy** on grid, specified by gridname. The default value is [0, 0]. For example, the following command will place *inst0* (cellname is *mycell0*) at *[3, 1]*, on *mygrid*. ```python inst0 = laygen.relplace(cellname='mycell0', gridname='mygrid', xy=[1, 3]) ``` **transform** paramter is used for mirroring/rotation. For example, this command will do a mirrored placement in x-axis. ```python inst0 = laygen.relplace(cellname='mycell0', gridname='mygrid', xy=[1, 3], transform='MX') ``` Possible **transform** parameters are **R0**, **R180**, **MX**, **MY**, and **MXY**. The following figure shows how instances are placed by running the above two commands. ![placement](images/laygo_bag_placement0.png) 2. **refobj**: You can use the **refobj** argument to specify the reference object that the new object is placed from. Following objects can be used for the **refobj** argument. * **Instance / InstanceArray** : the new instance will be placed at the **right** side of **refobj**. For example, the following command will place inst1 (mycell1) at the right side of inst0, on mygrid. ```python #pseudo code. modify parameter values for actual use inst1 = laygen.relplace(cellname='mycell1', gridname='mygrid', refobj=inst0) ``` ![placement](images/laygo_bag_placement1.png) * **Pointer** objects defined in **Instance / InstanceArray** : The **Instance** and **InstanceArray** objects have various Pointer objects to contain geometry information. The Pointers can be used for **refobj**. Supported **Pointer** objects are **left, right, top, bottom**. For example, the following command will place inst2 at the bottom side of inst1, mirrored in x-axis. ```python #pseudo code. modify parameter values for actual use inst2 = laygen.relplace(cellname='mycell2', gridname='mygrid', refobj=inst1.bottom) ``` ![placement](images/laygo_bag_placement2.png) You can also combine the two ways of placement. The following example will place inst3 at the right side of inst2, with [1, 0] offset on 'mygrid', mirrored in x-axis. ```python #pseudo code. modify parameter values for actual use inst3 = laygen.relplace(cellname='mycell3', gridname='mygrid', xy=[1, 0], refobj=inst2.right, transform='MX') ``` ![placement](images/laygo_bag_placement3.png) The way of architecting your templates completely depends on your preference. The example generator codes assume **nmos4_fast_center_nf2** and **pmos4_fast_center_nf2** templates are used for 2-fingered NMOS/PMOS devices, and **nmos4_fast_boundary** and **pmos4_fast_boundary** templates for boundary geometries for NMOS/PMOS devices. The resulting layout should look like this. ![placement](images/laygo_bag_nand_placement.png) If you want to display the layout, run the following command and open **laygo/nand_test**. ```python laygen.export_BAG(prj) ``` The **relplace** function also has other arguments, explained below: 1. **shape** parameter sets the array dimension, for mosaic placements. (eg. shape=[2, 3] will create a 2x3 dimensional array) 2. **spacing** parameter sets the 'pitch' of the array placement. If None, laygo calculates the spacing parameter from the size of template. 3. **direction** parameters sets the direction where the object placed from (with respect to the reference instance). For example, refinstname=X, direction='top' will place the new instance on top of instance X. Possible values are **left**, **right**, **top**, and **bottom**. 4. **transform** parameter sets the transformation of the instance. Possible values are **R0**, **R180**, **MX**, **MY**, and **MXY**. Refer to the API documentation for details. ## Signal routing **GridLayoutGenerator.route** function is used for creating metal wires. Like the **relplace** function, the route function can use xy0/xy1, and/or refobj0/refobj1. **route** uses two arguments for each type of input because the **route** needs to calculate the starting and ending point of wire. This example creates a vertical and a horizontal route on grid. Layers are automatically selected based on their routing directions. ```python #pseudo code. modify parameter values for actual use laygen.route(gridname0='myroutegrid', xy0=[2, 4], xy1=[2, 6]) #vertical laygen.route(gridname0='myroutegrid', xy0=[2, 4], xy1=[5, 4]) #horizontal ``` This example shows a routing example using refobj (from A pin of inst0 to B pin of inst1). ```python #pseudo code. modify parameter values for actual use laygen.route(gridname0='myroutegrid', refobj0=inst0.pins['A'], refobj1=inst1.pins['B']) ``` As shown in the **relplace** section, the xy and refobj parameters can be combined. ```python #pseudo code. modify parameter values for actual use laygen.route(gridname0='myroutegrid', refobj0=inst0.pins['A'], xy0=[2, 1], refobj1=inst1.pins['B'], xy=[0, 1]) ``` Let's go back to the real example. Running the following commands creates a rotated L shape route structure, stacked from M1 to M3, for one of the nand gate input. ```python # a r0 = laygen.route(gridname0=rg12, refobj0=nd[4].pins['G0'], refobj1=pd[4].pins['G0'], via1=[0, 0]) r1 = laygen.route(gridname0=rg12, xy0=[-2, 0], xy1=[0, 0], refobj0=pd[4].pins['G0'][0, 0], refobj1=pd[4].pins['G0'][-1, 0]) ra = laygen.route(gridname0=rg23, xy0=[0, 0], xy1=[0, 2], refobj0=pd[4].pins['G0'][0, 0], refobj1=pd[4].pins['G0'][0, 0], via0=[0, 0]) ``` The first line creates a route from the **G0** pin of **nd[4]** (which is the second NMOS) to the **G0** pin of **pd[4]** (which is the second PMOS) on rg12, with an additional via placement at the end point. So this is basically connecting the gates of NMOS and PMOS. The second line will create a horizontal route over the gate row, with a -2 offset at the starting point. Since we already create the connecting vias in the first line, there's no need to add more vias. The third line is creating the final vertical metal stub for the pin connection. The generated routing pattern should look like this (if you run **export_BAG**): ![placement](images/laygo_bag_nand_route.png) Running following commands will generate rest wire connections. ```python # b laygen.route(gridname0=rg12, refobj0=nd[1].pins['G0'], refobj1=pd[1].pins['G0'], via0=[0, 0]) laygen.route(gridname0=rg12, xy0=[0, 0], xy1=[2, 0], refobj0=nd[1].pins['G0'][0, 0], refobj1=nd[1].pins['G0'][-1, 0]) rb = laygen.route(gridname0=rg23, xy0=[0, 0], xy1=[0, 2], refobj0=nd[1].pins['G0'][0, 0], refobj1=nd[1].pins['G0'][0, 0], via0=[0, 0]) # internal connections ri = laygen.route(xy0=[0, 1], xy1=[0, 1], gridname0=rg12, refobj0=nd[1].pins['D0'][0, 0], refobj1=nd[4].pins['S1'][-1, 0]) for _p in np.concatenate((nd[1].pins['D0'], nd[4].pins['S0'], nd[4].pins['S1'])): laygen.via(xy=[0, 0], refobj=_p, gridname=rg12, overlay=ri) # output ron = laygen.route(gridname0=rg12, xy0=[-1, 0], xy1=[1, 0], refobj0=nd[4].pins['D0'][0, 0], refobj1=nd[4].pins['D0'][-1, 0]) rop = laygen.route(gridname0=rg12, xy0=[0, 0], xy1=[1, 0], refobj0=pd[1].pins['D0'][0, 0], refobj1=pd[4].pins['D0'][-1, 0]) laygen.via(refobj=nd[4].pins['D0'], gridname=rg12, overlay=ron) laygen.via(refobj=pd[1].pins['D0'], gridname=rg12, overlay=rop) laygen.via(refobj=pd[4].pins['D0'], gridname=rg12, overlay=rop) ro = laygen.route(gridname0=rg23, refobj0=ron.right, refobj1=rop.right, xy0=[0, 0], xy1=[0, 0], via0=[0, 0], via1=[0, 0]) ``` ## Power routing Power routing is very similar to signal routing. Run following commands to creat power rail shapes. ```python # power and ground route for dev in [nd[1], pd[1], pd[4]]: for pn in ['S0', 'S1']: laygen.route(gridname0=rg12, refobj0=dev.pins[pn], refobj1=dev.bottom, direction='y', via1=[0, 0]) # power and groud rails rvdd = laygen.route(gridname0=rg12, refobj0=pd[0].bottom_left, refobj1=pd[5].bottom_right) rvss = laygen.route(gridname0=rg12, refobj0=nd[0].bottom_left, refobj1=nd[5].bottom_right) ``` ## Pin creation **GridLayoutGenerator.pin** function creates a pin and paste it to the generated layout, like this. ```python # pins for pn, pg, pr in zip(['A', 'B', 'O', 'VDD', 'VSS'], [rg12, rg12, rg23, rg12, rg12], [ra, rb, ro, rvdd, rvss]): laygen.pin(name=pn, gridname=pg, refobj=pr) ``` ## Export to BAG Running the following command will produce the final layout. ``` # export import bag prj = bag.BagProject() laygen.export_BAG(prj) ``` The resulting layout will look like this. ![nand](images/laygo_bag_nand_cds.png)